
ANALYTIC DETERMINATION OF TEMPERATURE 

FIELDS ONAN ELECTRONIC COMPUTER 

N. M. Tsirel'man UDC 536.5:62-405.001 

Computerization of analytical transformations for determination of the thermal 
state of bodies of complex shape is described. 

The analytical expression of heat transfer regularities possesses clarity, informative 
value, and parametrization properties and permits rapid execution of multifactorial, multi- 
variational computations. Moreover, accurate analytical solutions are tests for numerical 
methods being created and in this respect are irreplaceable. 

Obtaining analytical descriptions is constrained to a significant extent by the com- 
plexity of the algorithms being proposed (their execution often remains the lot of the 
authors). 

A method to obtain analytical solutions of a multidimensional nonstationary heat con- 
duction problem having the following form in the desired temperature T(M, T) 

C (M, ~) T~ = div [~ (M, ~ vTI -[- qo (M, ~), M (x, g, z) E fl, T > 0 ( 1 ) 

T(M, O) = T0(M), MEfl, (2) 

T(M, ~ = r w ( M  , ~), MES~, ~ > 0 ,  ( 3 i )  

--~(M, ~)vT.n=q(M,  ~), MES~, ~ > 0 ,  ( 3 i i )  

. - -~(M,  ~ ) v T - n = ~ ( M ,  ~)[T(M, ~) --  To (T)], MES3, ~ > 0  ( 3 i i i )  

on an electronic computer is represented in this paper. 

Let us represent the desired solution in the form 

T (M, ~) = F (M, ~) -]- u (M, ~), (4) 

where t he  f u n c t i o n  F(M, ~) s a t i s f i e s  the  inhomogeneous boundary c o n d i t i o n s  (3 ) .  

Then s u b s t i t u t i n g  (4) i n t o  ( 1 ) - ( 3 ) ,  we o b t a i n  a boundary v a l u e  problem wi th  homogeneous 
boundary conditions 

C(M; ~)u~=div[~(M, ~)VUI+Qo(M, ~), ME~,  ~ > 0 ,  ( 1 ' )  

u (M, O) = u0 (M), M E ~, ( 2 ' )  

u(M,~)=O, MES~, ~ > 0 ,  (3 i) 

vu.n ----- 0, MES~, ~>0, (3~i) 

~ ( M ,  "~)vu.n=~z(M, "~)u(M, "0, MES3, T > 0 .  (31ii) 

We have u0(/V[ ) ~ To(M)--F(M, 0), Q~(M, ~)= q~(M,. ~ ) + d i v [ l ( M ,  x)vF(M, ~)I--C(M, ~)F~(M, ~) 
in (i')-(3'). We will seek the function u(M, ~) in the form 

u(M, x)----~/~ %i(M, ~)~(~). (5) 
i ~ l  

Here ~i(T) are unknown functions of the time, and xi(M, ~) is a complete system in ~ of coor- 
dinate functions selected to satisfy a priori conditions (3') and dependent on T in a known 
manner since it includes %(M, T) and e(M, T) for boundary conditions of the third kind. 
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The unit square. 

A universal subdomain of a plane domain. 

It is shown in [i, 2] that when utilizing a variational description with a convolution 
function we have a Cauchy problem in ~i(~) 

2Aj~ ('0 */('0 = ~ a~, (*) ,~ (T) + Aj ('0, 
i ~ 1  i : l  

• Aj.z (O) *i (O) = ~C(M, O) uo(M)gjdfl,  ] =  1 . . . . .  n, 
i = 1  .ca 

(6) 

where 

Aj~ (x) = [ C (M, x) %~x~dfl; Aj ('0 = ,[ Q. (M, ~) )od'fL 

The first approximation to the solution of the problem (i')-(3') in the form 

ul (M, ~) = .i (~) xl (M, ~) 
contains ~i(~) thus: 

(7) 

(8) 

where 

~1 (T) = {.i [A1 ('~)/A~I (~] exp {--,( [all (O)/All (0)] dO} d'i~--}- 1~1 (0)} exp {,I [all ~)/An ('~)] d~}, 
0 0 0 

~ (0) = ~ C (M, O) uo (M) )hdf~/An (0). 
f~ 

(9) 

It is easy to find the analytic second approximation 

u~ (M, x) = $~ (~ ~ (M, ~ + ~ (~) %~ (M, T) ( 1 O) 

for aii= const, Aji = const (this case corresponds to the dependence of C, X, and ~ on only the 
coordlnates) and is possible just for certain dependences of the coefficients aji and Aji 
on %. 

It follows from the above that the main step in the method developed to obtain the 
first and second analytic expressions to the solution of nonstationary heat conduction prob- 
lems is to determine the analytic dependences for the functions aji(~) , Aji(z) , Aj(z) of 
the system of equations (6) by means of (7). These same dependences must-be set up to save 
computation time and before the numerical solution of the system (6) when searching for the 
n-th (n > 2) nonanalytic approximation to the solution of the problem (1)-(3). 

It seemed expediate to us to transfer the analytic calculations of the integrals (7) 
over to an electronic computer when utilizing the results in the development of the pro- 
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Triangle subdomain. 

The plane domain ~ and its polygonal equivalent ~e" 

gramming systems for the analytic transformations [3]. To do this a packet of applied 
programs was produced for the analytic integration of polynomials in plane domains. 

Vectors with polynomial components called vector-polynomials [4] are a convenient 
object for the analytic transformations in the evaluation of the multiple integrals in (7). 
As a rule it is necessary to use several vector-polynomials mutually consistent at the nodal 
points of the boundary, i.e., a polynomial spline, for the description of the boundary of 
the domain ~. Let us also assume that the integrands are polynomials in the variables of 
integration, the coordinates x, y and the time ~. Therefore, the functions C(x, y, ~), 
~(~ Y,~),qv(~ y,T), T~(x,y,T), q(x y, T), To(T), ~(X, Y, T) known in the formulation of the prob- 
lem, and the coordinate functions Xi(X, y, T), Xj(x, y, T) are given by polynomials. 

It is specified that numbers, symbols, or their combinations can be coefficients of 
the polynomials. A name is conferred on each polynomial in the program and upon insertion 
in the electronic computer turns out to be a quantity of the variables and its terms (mono- 
mials) used in them, whose introduction is performed sequentially as x ~ yO, x, y, x 2, xy, 
y2, x s, x2y, xy2, yS etc. If some monomial is absent from the polynomial, then the zeroth 
coefficient associated with it is inserted. 

Then the procedure for the analytic calculation of a double integral over a plane 
domain ~ will consist of two stages: 

i) the partition of ~ into a set of elementary subdomains Qi and the corresponding 
representation of the multiple integral as 

h 

[~ i = 1  [}i 

k 
where  p ( ~ )  i s  a p o l y n o m i a l  d e f i n e d  in  ~ = U ~i; 

i : 1  

2) t h e  mapping  o f  ~2 i i n  t h e  u n i t  s q u a r e  ( F i g .  1 ) .  

A universal subdomain of ~i in the form of a curvilinear trapezoid whose opposite 
sides are Jordan arcs is shown in Fig. 2. On this figure AoB0, AIB I are line segments, 
A0A I, B0B 1 are Jordan arcs, each of which is described by vector=polynomials with parameters 
t and s, respectively 

AoA l - - a ( t ) = a o q - a l t q -  ... q-a~t n, B o B l = b ( s ) : b o  q - b ~ s +  ... q-b~s n. (12) 

We evidently obtain subdomains in the form of triangles with one or two curvilinear sides 
when B 0 coincides with B I or B 0 with A 0 (or B I with At). The curvilinear trapezoid goes 
over into a segment during the simultaneous coincidence of B 0 with A 0 and B 1 with A I. More- 
over, by partitioning the triangle with three curvilinear sides into two parts, there 
results a triangle with two curvilinear sides. 
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TABLE i. Results of an Analytic (top row) and Numerical 
(bottom row) Finite Element Computation of the Temperature 
Field in a Triangular Prism 

Temperature at points M(x, y) of the ,rism transverse section 
Time 

"~ x=1,00; x=:0,85; x=O 825; x=0,825; x=0,35; x=0,70; x=0,70; x~1,00; 
y=:--0,45 y=--0,35 y=--O. 75y=--0.075 y=O,O0 y=0.075 g=0,20 y=0.55 

0,01 

0,02 

0,05 

0,07 

0,10 

1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
l,O000 
1,0000 
1,0000 
t,0000 
1,0000 

0,8029 
0,8105 
0,8652 
0,9180 
0,9568 
0,9777 
0,9798 
0,9893 
0,9935 
0,9964 

0,4098 
0,3632 
0,5962 
0,6345 
0,8706 
0,8868 
0,9394 
0,9454 
0,9808 
0,9817 

0,2618 
0,2400 
0,4948 
0,5010 
0,8382 
0,8358 

0,9242 [ 
0,9208 
0,9758 I 
0,9735 i 

0,4584 
0,3783 
0,6294 
0,6485 
0,8816 
0,8903 
0,9444 
0,94~9 
0,98z2 
0,9825 

--0,0515[--0,0101 
0,0375 0,0069 
0,2804 0,3088 
0,2541 0,3060 
0,7695 0,7786 
0,7393 0,7632 
0,8920 0,8693 
0,8782 0,8652 
0,9654 0,9668 
0,9580l 0,9620 

1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 

It must be noted that the points A0=a(t0), A1=a(tl), B0=b(s0), B1=b(sl) can be con- 
sidered vectors having values of the abscissas and ordinates as projections on the coor- 
dinate axes. 

The following universal method of parametrization of the subdomains ~i displayed in 
Fig. 2 is proposed below by following [4]. 

We go from the parameters t and s in (12) over to the parameter V6[0,1] by means of 

the rule 

t = ( 1 - - & ) t  oq-~t l ,  s - - ( 1 - - ~ ) s  o q - ~ s  1 ( 1 3 )  

and we join the points 
v E[O, 1]. Then the subdomain ~i will be parametrized as follows 

re(D, v ) = ( 1 - - v ) A ( ~ ) + v B ( ~ ) ,  ~, vC[O, 1]. 

The Jacobian for the passage from ~i to ~(~, v) here equals 

/ D (~, x,) I 

The determinants in the right side of (14) are polynomials of the arguments H and i - ~. 

Each integral in the right side of (ii) can now be rewritten in the form 

A(~) = a(t(~)) and B(~) =b(s(~)) by a line segment with parameter 

(14) 

( i s )  

l 1 
I P (~') a~  = .i' !' p(o([~, v)) J(~,  v) dvd,u, ( 1 6 )  

dl ~=o v'=o 

where p(~)J is a polynomial in the variables ,~, i - ~, ~, i - v. Consequently, the integ- 
ral (16) is easily evaluated analytically. A significant saving in machine time is achieved 
if the formula 

i 

v" ( 1 -  v)/d'v : i!]!/(i+j+ 1)! ( 17 )  
o 

is used here. 

The simplest example for the application of the approach developed here is the para- 
metrization of the subdomain ~i that is a triangle when the points B 0 and B i coincide with 
the origin (Fig. 3). 

The lines AoA1 

in which t o = 0, t i 
~C[0, i] we have 

and BoB~ are described by the vector-polynomials 

AoA l = a ( 0 = ( 1 - t )  Ao+ tA1 ,  B o B l = b ( s ) = 0 ,  ( 1 8 )  

= i, so that when going over from the parameters t and s to the parameter 
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AM(t,1) :-8/15 A2 HSAT-8/45 A2HTAS-12/35 B2 H 7 

A'-4/63 B2 HgAS-q/63 C2 HSAg-4/105 C2 HTA 7 

-t6/315 E2 H6Ag-8/315 E2 H8A 7 

A(1,t)=8/815 A1 H'TAT+8/675 Bl HgA'7+8/~725 CI H 7 

A9+64/7/-425 Ft HI~ El HSA 9 

A(1)=G TP A2 HZA~+q/3 TP A2 HqAt+46/t5 TP B2 H '~ 

A4+2/5 TP B2 Hs~+t4/t5 TP C2 H2AS+2/5 TP 02 144 

# + 4 / 5  TP E2 H3A6+4/15 TP E2 HSA 4 

PS10(t)=2/t5 TO At H4A~+Z+/63 TO Bt HBA4+#/315 TO 

Ct H4A6"+.t/2'I TO Ft HTA4+I//105 TO E~ HSA 6 

Fig. 5. Components of the analytic solution of 
a heat conduction problem for an isosceles tri- 
angle (Labtam-3015/16 computer ADC printer). 

A (~) = a (t (1~)) = a (IL0 = (1 - -  in) Ao 4-  ~A~, B ([~) = b (s (1*)) = Bo (0). ( 1 9 )  

The subdomain ~i turns out to be parametrized in the following manner: 

r (V,, ~') = (1 -- ~,) [(1 -- p.) Ao 4- P, A1] 4- ~,Bo : (1 -- ~,) [(1 -- i~) Ao 4- I~A1] 

and the Jacobian of the transition from ~i to ~(~, ~) is 

J = I ( 1 - - ' : ) ( A 1 - - A o )  ( V , - - 1 ) A o - - ~ A I I = ( 1 - - ' 0  x ~ - -  Xo - -  Xo l = ( l  _ w) (Xoy _ Xlyo)" (20) 
Yl - -  Yo - -  Yo I 

The second cofactor in the right side of (20) agrees with twice the area of the triangle 
AoAiB0. 

It is also clear that x and y must be replaced in the integrand of the right side of 
(16) according to the rule 

x = o~ = (1 -- ~) [ ( 1 - -  ~t) Xo + ~xll, y = oy = (1 -- ,~) [(1 -- l~) Y0 + ~Y~]. 

A program for the analytic determination of the functions aji(~) , Aji(~) , Aj(T), ~i(0), 
called "Integration in a polygonal domain," was produced on the basis of the results obtained, 
in the symbolic programming language PL/I-FORMAC [3].* Integration in a plane simply-con- 
nected domain ~ bounded by a curve S was replaced by integration in the polygonal domain 
Se, i.e., in a polygon. Here ~ is partitioned into triangular elements (Fig. 4). The 
explicit parts of the polygon boundary equations (broken line linkages) are determined on 
the electronic computer from the formula 

~vi = (Yi+l - -  Yl) ( x - -  xO - -  (x i+l  - -  xO ( Y - -  Yi), i =  1 . . . . .  N .  ( 2 1 )  

Afterwards the coordinate functions Xi, Xj are evaluated or inserted. For instance, we 
have for the case of homogeneous boundary conditions of the first kind 

N 
X1 = (--I) Nl] Wi, %o~= %%1, %8-----Y%1, X~----X2%1 .... (22) 

i=l 

A printout of the data inserted in the computer storage and the results of its compu- 
tation of the functions aji , Aji , Aj, ~0i(0) inserted in (9) to determine the temperature 
field in a first approximation in an unbounded prism having an isosceles triangle with ver- 
tex coordinates MI(0 , 0), M2(h, -a), Ms(h, a) is presented in Fig. 5 to demonstrate opera- 
tion of the program. A constant temperature T w = const was given on the prism surface and 
we assumed a uniform initial temperature distribution therein T o = const in the absence of 

*The program was compiled jointly with I. M. Bakirov. 
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sources of bulk heat liberation. The thermophysical characteristics of the body material 
were selected thus: 

C (x, g) = a 1 + blx 2 + c l y  2 + dlx2y -[- elxg~ + [ lx  ~, % (x, g) = a2 + b2x ~ + ( 2 3 )  

+ c2v 2 + d~x2g + e2xg 2. 

T h e  f o l l o w i n g  i d e n t i f i e r s  ( F i g .  5 )  w e r e  u s e d  i n  t h e  p r o g r a m  

a ~ = A M ( 1 ,  1), A ~ = A ( 1 ,  1), A ~ = A ( 1 ) ,  , I  (O). A~t (O) = PSIO (1), 

T ~  - TP,  To = TO, h = H, a = A, a 1 = A1,  a2 = A2, b I = B t ,  

b 2 = B2, cl = Cl ,  c e = C2, dl = D I ,  d 2 = D2, e I = E l ,  e2 ~ E2,  

]:1 = F1.  

The program created was then used also to construct the first approximation to the 
determination of the temperature field in an unbounded prism of triangular section formed 
by the planes x = i, y = klx , y = k~x under the conditions of the preceding problem when 
the section vertices have the coordinates Ml(0 , 0), M2(I, kl), Ma(l, k2). 

It is expedient to note that obtaining the analytic first approximation in the identi- 
fiers require 78 and 540 sec ES-1060 computer machine time, respectively, for the triangles 
under consideration in the prism section. The time to perform the computations was reduced 
sharply when using numbers as polynomial coefficients. Thus 18 sec ES-1060 computer machine 
time was expended in determining T(x, y, ~) in a nonisosceles prism with k I = -0.5, k 2 = 0.8, 
a I = a s = I, b I = b 2 = c I = c 2 = d I = d 2 = e I = e 2 = fl = 0. To obtain the same results 
presented in the table in the case of using a well-known finite element method (FEM) 1400 
sec was expended on the same computer. Moreover, when using the FEM very much time was 
required additionally in executing routine work and work to prepare the original digital 
information associated with the potential introduction of errors. 

NOTATION 

and S, geometric domain and its boundary surface with the parts $I, $2, ~and $3; 
x, y, z, and T, coordinates and time; C(M, x) and %(M, ~), bulk specific heat and heat con- 
duction coefficient; qv, power of the bulk heat liberation sources; Tw(M , 7) and Tc(T), sur- 
face temperature on S I and of surrounding medium at $3; q(M, 7), heat flux density on $2; 
and a(M, ~), coefficient of convective heat elimination to S 3. 
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